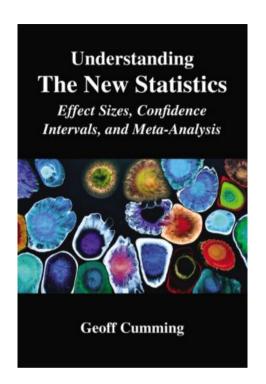
topconfects

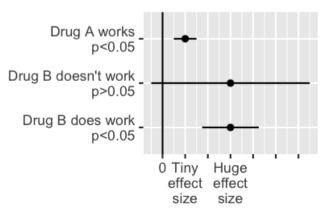
Top confident effect sizes for differential expression

Paul Harrison @paulfharrison

Monash Bioinformatics Platform, Monash University

Widespread criticism of *p*-values


- Commonly misinterpreted.
- Only reject effect size zero, effect may not be important.
- Invalid when *selectively* reported.


Ioannidis, J. P. A. (2005). Why Most Published Research Findings Are False. *PLoS Medicine*, 2(8):e124.

Confidence Intervals are better

significance measurement accuracy

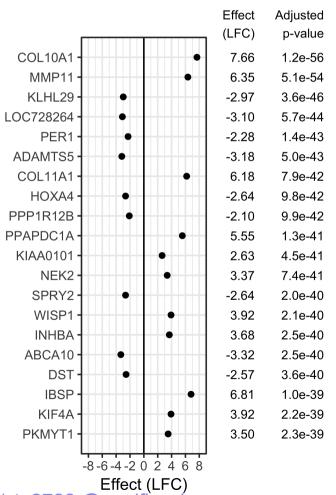
- Apparent paradoxes resolved.
- Same underlying theory.
- Also invalid when *selectively* reported.

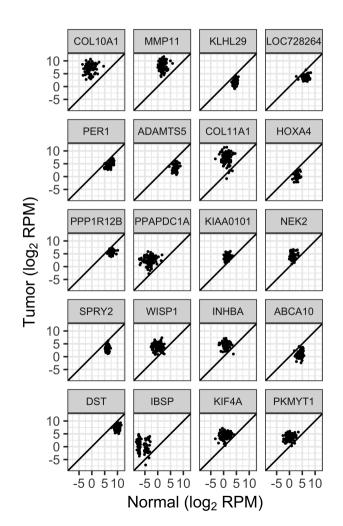
Controlling the False Coverage-statement Rate (FCR)

Benjamini, Y. and Yekutieli, D. (2005). False Discovery Rate–Adjusted Multiple Confidence Intervals for Selected Parameters. *Journal of the American Statistical Association*, 100(469):71–81.

To maintain an FCR of q

after selecting k of n results


provide $1 - \frac{k}{n}q$ confidence intervals.


- Generalization of FDR.
- Any selection rule may be used!

Caveats:

- Point estimates remain biassed by selection.
- The experiment without interesting results that is never published is still a problem.

Ranking by p is a common default in bioinformatics software

TCGA breast cancer data:

RNA-Seq of 97 tumor-normal pairs.

limma-voom analysis.

Using this table:

Read down the table until desired FDR reached.

eg 13,784 DE genes at 5% FDR!

Sorting by *p*-value focusses on high signal-noise ratio.

Like ranking by Cohen's *d*, but not comparable between experiments.

TREAT solves the problem of too many results

McCarthy, D. J. and Smyth, G. K. (2009). Testing significance relative to a fold-change threshold is a TREAT. *Bioinformatics*, 25(6):765–771.

Null hypothesis for each gene that absolute LFC is smaller than threshold e.

- Specify threshold to be a biologically significant amount.
- Table sorted by adjusted p-values, again allows reader to choose FDR.

But:

- FDR of 5% is fine, don't need to give me this choice!
- Not clear how to choose threshold.

(Compared to worst case p-value from t-tests within the interval, TREAT shrinks p-values by up to half.)

Topconfects improves TREAT usability

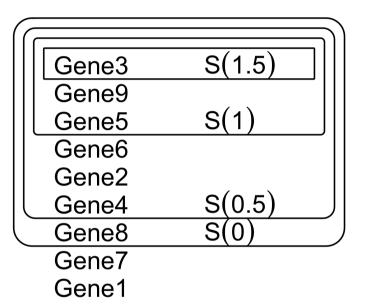
TOP CONfident efFECT Sizes

Harrison, P. F., Pattison, A. D., Powell, D. R., and Beilharz, T. H. (2019). Topconfects: a package for confident effect sizes in differential expression analysis provides a more biologically useful ranked gene list. *Genome Biology*, 20(1):67.

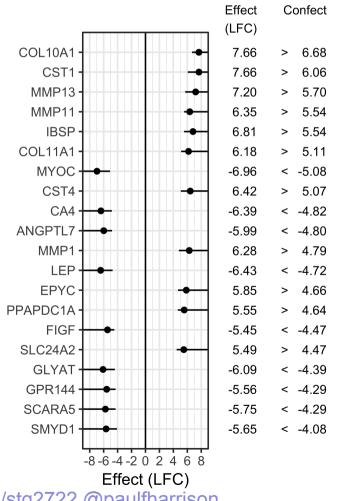
An alternative presentation of TREAT.

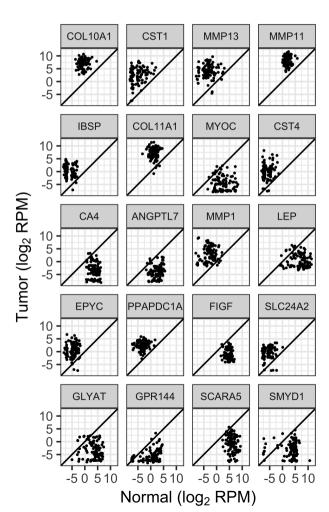
- Fixed FDR.
- Table ranked by "confect" values, allow reader to select threshold e.
- Once threshold chosen, confect values are confidence bounds that control the FCR (slightly conservative).

Topconfects method


Let S(e) be the set of genes selected by TREAT at threshold e, for some fixed FDR (eg 5%).

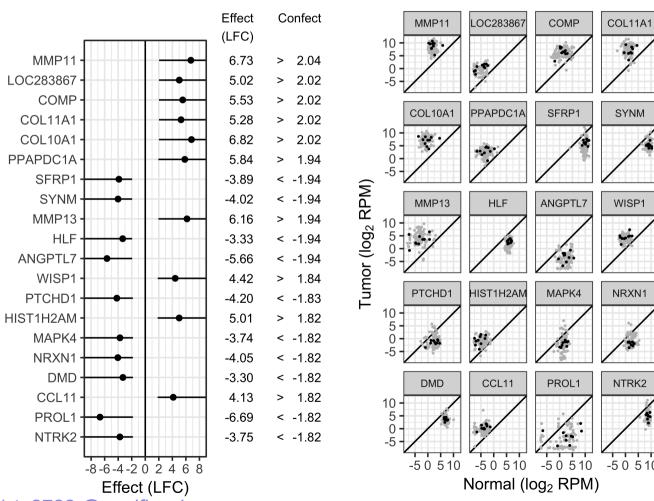
These sets nest:


• If $e_1 > e_2$ then $S(e_1) \subseteq S(e_2)$.


Try
$$e = 0, 0.01, 0.02, 0.03, \dots$$

Call the largest e for which a gene is a member of S(e) its "confect", with appropriate sign.

Topconfects at 5% FDR


Top ranked genes have large LFCs.

Changes are less consistent than top-ranked by *p*-value, but confidently large on average.

No ad-hoc filtering.

No threshold tuning.

Topconfects at 5% FDR, smaller number of samples

Sub-sample of 10 patients.

Confects much smaller than effects indicates lack of power.

Using topconfects

```
BiocManager::install("topconfects")
```

• As a further step in limma analysis:

```
# ...cpm(log=TRUE) or voom...
fit <- lmFit(y, design)
# ...possibly also contrasts.fit()...
limma_confects(fit, coef="thing_to_test", trend=TRUE)</pre>
```

- Also has functions to follow edgeR or DESeq2 analysis (slower).
- Normal- or *t*-distributed errors:

```
normal_confects(estimates, standard_errors, df)
```

Thinking in terms of measuremment

What effect size best captures our interest?

How accurate is the measurement?

Top confident gene set enrichment at 5% FDR

GO BP Term	Effect (r)	Confect	n	n up	n down
chromosome organization	0.099	0.081	1045	528	291
DNA conformation change	0.087	0.075	250	157	49
system process	-0.087	-0.072	1576	384	832
DNA packaging	0.083	0.072	165	110	33
mitotic cell cycle process	0.084	0.067	769	398	226
nucleosome assembly	0.078	0.067	112	80	19
chromatin assembly	0.078	0.067	129	89	23
mitotic cell cycle	0.083	0.067	885	446	272
DNA metabolic process	0.081	0.067	924	490	242
nucleosome organization	0.077	0.066	139	97	24

(6506 genes up, 7719 down at 5% FDR. 9277 of 11218 gene sets significant at 5% FDR.)

Effect size:

LFC correlation with gene-set indicator variable $= \pm \sqrt{\text{variance explained.}}$

Measurement accuracy:

Bootstrap patients to estimate standard error.

Apply normal_confects.

n large, not much change in order using "confect" vs "effect".

Confects give us confidence that these discoveries are real.

Discover cancer related to cell division.

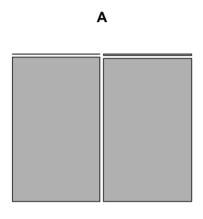
Discussion

- topconfects confidently ranks results by what you are interested in.
- No need for parameter tuning or ad-hoc filtering.
- False Coverage-statement Rate concept is versatile and under-used.
- To test new methods (eg Bayesian methods), check confident/credible regions control FCR under specified selection scenarios.

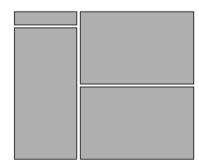
Acknowledgements: Traude Beilharz, David Powell, Andrew Pattison

Extra slides

Measuring changes in ratio


Compare:

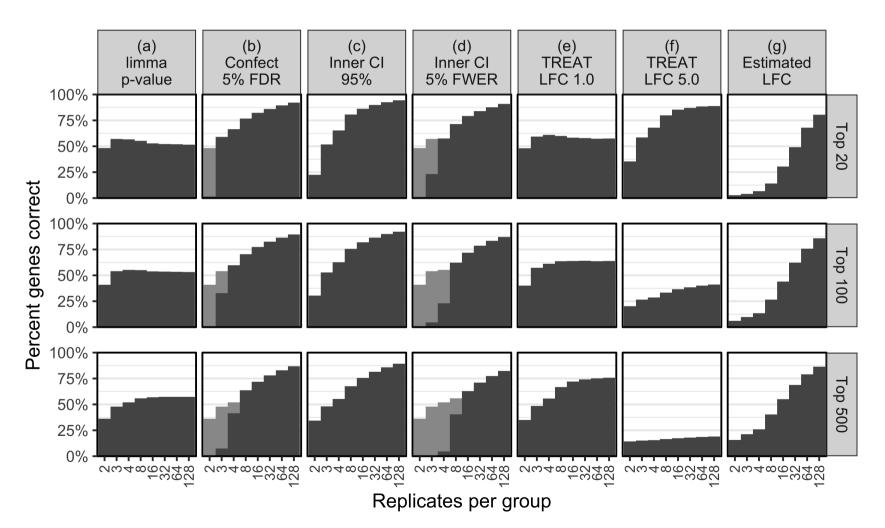
A. 10:10000 vs 100:10000


B. 10:100 vs 100:100

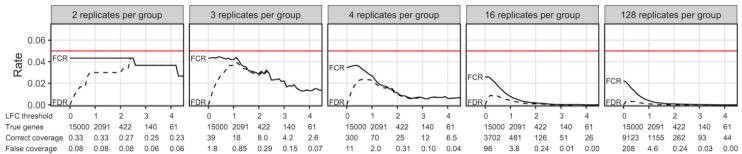
- By log ratio of ratios, equally interesting.
- By difference of proportions, B is more interesting.

Would A or B have the smaller p-value, with null hypothesis of equal ratios?

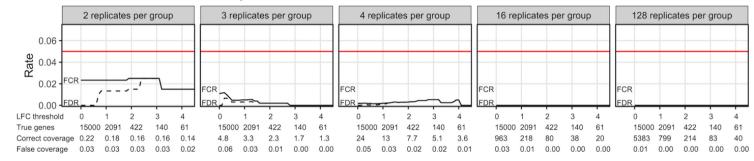
В

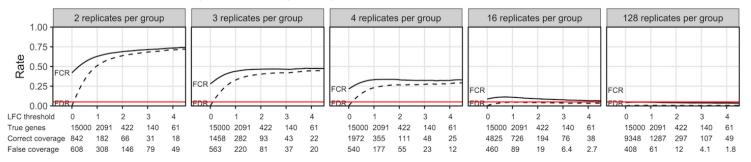

"Most significant" gene sets

Term	Effect (r)	FDR	n	n up	n down
response to heparin	-0.035	1.1e-280	6	1	5
negative regulation of peptide hormone secretion	-0.035	7.5e-262	39	10	22
DNA replication-independent nucleosome assembly	0.055	8.1e-259	48	40	4
protein localization to chromatin	0.030	4.0e-246	28	18	3
CENP-A containing nucleosome assembly	0.055	1.9e-243	37	33	2
positive regulation of mast cell chemotaxis	-0.026	1.7e-237	3	0	3
telomere capping	0.031	2.2e-234	47	27	14
telomere organization	0.063	3.7e-234	158	105	28
chromatin remodeling at centromere	0.055	7.1e-230	41	35	3
regulation of calcium-independent cell-cell adhesion	-0.027	7.1e-230	2	0	2


z test then ranking by "significance".

(6506 genes up, 7719 down at 5% FDR. 9277 of 11218 gene sets significant at 5% FDR.)


Simulation


A Confects at 5% FDR

B Inner bound of 5% FWER adjusted intervals

C Inner bound of 95% CI (note different y scale)

